
J.  Fluid Mech. (1993), vol. 251, pp .  451461 
Copyright 0 1993 Cambridge University Press 

45 1 

Self-sustained solitary waves in non-equilibrium 
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The paper is devoted to the creation of an original model of propagation of weak but 
finite-amplitude waves initiating an exothermic process connected with chemical 
reaction or relaxation of a non-equilibrium medium. The medium is single phase (a 
fluid), or a homogeneous two-phase medium (liquid with gas bubbles). A nonlinear 
differential model describing wave-kinetic interaction and wave evolution is derived. 
The linear dispersion and dissipative features of these systems are investigated both 
analytically and numerically. Attention is paid to explanation of the physical 
mechanisms resulting in the formation of a self-sustained solitary wave, which in terms 
of synergetics could be called a ‘dissipative structure ’. 

1. Introduction 
A number of papers, starting from the classical work of Wood & Kirkwood (1957) 

have been devoted to the description of wave-kinetic interaction in non-equilibrium 
systems (with chemical reaction or relaxation). The phenomenon of acoustic 
disturbance amplification in media with spatio-homogeneous exothermal reaction or 
relaxation was analytically described for the first time by Nakoryakov & Borissov 
(1976) and Clarke (1977). The exact quasi-linear evolution wave equation for 
irreversibly reacting media was derived by Abouseif & Toong (1981)’ and an 
approximate equation for the evolution of high-frequency quasi-linear disturbances 
was integrated numerically. In the present paper, the authors develop the original 
model of Nakoryakov & Borissov (1976), examining the evolution of one-dimensional 
weak (but not linear) waves in a non-equilibrium medium and deriving the criteria for 
steady-state solitary wave formation. 

2. Substantiation of the model 
Let us analyse the processes in a system such as a chemically inert liquid containing 

bubbles of a chemically active gaseous mixture. (This problem also includes the case of 
a single-phase fluid medium.) A wave compresses and adiabatically heats the gas in the 
bubble, initiating an exothermic reaction in the gaseous phase. One can describe the 
wave as a planar one if the size of the bubbles is much less than the distance between 
them and that distance is much less than the length of the wave. The process in the 
gaseous phase is then governed by the following equations : 
the equation of state (in general form) 
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the kinetic equation for the one-step chemical transformation reactants + products (in 
general form) 

(2) 
dY 

4 P g ,  s,, y> = Pg(Pg, s,, Y) x; 
the equation of entropy production (due to change of chemical potential only) 

In (1)-(3) p is the density, p is the pressure, T is the temperature, S is the entropy, Y 
is the mass fraction of the products, w is the reaction rate, q is the specific heat release 
of the reaction, subscript g denotes the gaseous phase, and subscriptfcorresponds to 
the condition Y = Const ('frozen reaction'). Transport processes in the gaseous phase 
are neglected. One cannot neglect the variation of gas entropy here, unlike the case of 
equilibrium systems. 

Taking into account (2) and (3) ,  equation (1) can be rewritten in the form 

where 

Here C, is the speed of high-frequency disturbances in the gas, c p  is the specific heat 
capacity of the gas mixture at constant pressure, c is the temperature expansion 
coefficient of the gas, u is the specific volume, and Av, is the difference in specific 
volumes of the gas mixture after and before the reaction. 

d F  dp dS dY 
dt dt dt 

Using (2) and (3), the identity 

_ -  - F A+Fs-$+Fy- 

can be rewritten 

where 

Eliminating Ffrom the last relation with the help of (4), the following equation of state 
can be derived for the gaseous phase: 

where 9 4  74 c; N =  (l+L)(l-fJ); L =  I+--; a=- r, F Y  l + L  

171 and C play the roles of characteristic reaction time and low-frequency disturbance 
speed in the gas; L is a dimensionless parameter connected with irreversibility of 
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the process, and 6 is the dimensionless parameter of chemical dispersion. Generally 
7, C, L, N, 6 are variables determined by the kinetic equation (2). Equation ( 5 )  was 
derived for the first time in Nakoryakov & Borissov (1976). We assume below 
that the parameters of chemical dispersion and chemical irreversibility are small 
(IS( < 1, ILl Q l), and consequently N - 1. 

Usually the partial derivations of H have definite signs : Fs > 0, Fp > 0, Fy < 0. So for 
this usual kinetic dependence we obtain C2 > C; for q > 0 (exothermic reaction) and 
C2 c Cs for q c 0. 

If the compression of the gas by a weak wave in an adiabatic process, then the 
propagation speed of the wave can be approximately written as the first two terms of 
a series: 

where 

c; = (1 +pk=!? C2 +O(€), 

C& = (+J0; y = O(€)); 

Pso fo 

subscript 0 denotes the unperturbed state of the medium, y is the adiabatic exponent 
(y = Const), and E is a small parameter (0 < e < 1). 

Under the supposition of weak bubble pulsations in the wave, one can use the 
linearized equation of bubble dynamics, which describes the added mass effect of the 
liquid : 

where r is the bubble radius, subscript I denotes the liquid phase, and the variables 
without subscripts g or 1 correspond to the two-phase medium. 

The density p of the two-phase medium is determined by the volume fraction q5 or 
mass fraction x of the gas (x = Const): 

P = P d l - $ ) + P g q 5  = (;.Y.i)'; pi = Const. 

It is easy then to find the expression for weak fluctuations of pg:  

i.e. ( P s - P g o ) / P s o  = (P-Po) / (~oPo)+o("~ (7) 
Neglecting the fluctuations of $, one can also write the connection between pressure 

in the bubble and pressure in two-phase medium as 

where ,8 = r,/[3$,(1- $J] is the bubble dispersion parameter. 

weak wave in a two-phase reactive medium: 
Combining (5j(8), one can now derive an equation governing the evolution of a 
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where 

af and a correspond to the velocities of high- and low-frequency (relatively to the 
inverse reaction time) disturbances in the bubbly medium. (All the disturbances are 
supposed to be of low frequency relative to the frequency of free bubble pulsations. To 
reduce (9) to the single-phase case one need only to formally set /3 = 0, $o = 1.) 

To obtain a closed system of equations one has to introduce the laws of mass and 
momentum conservation for two-phase medium, 

where u is the mass velocity of the medium and 7 is the viscosity of the liquid. The 
viscosity of the liquid is important, being one of the main dissipative mechanisms. 

To transform (9)-(11) to dimensionless form it is convenient to use the following 
reference quantities : 

p* = po; u* = afo; t* = r. 
Note that even for high-amplitude waves the density of a two-phase medium with low 
gas fraction varies only insignificantly, and the variations of mass velocity are 
correspondingly small. So it is quite natural to assume the following: 

U 
p-po = jj = O(c), - = ii = O(s), - - -$= O(s) 

P* U* P*U*2 

@*u*~ % p,,), and additionally to suppose the dispersion of the medium to be weak: 

-- - q = O(€), ____ p - - 1 = O(€). 'I 
p*u*zt* (u* t * ) 2  

For the case of a single-phase fluid medium, one needs the parameter variations to be 
much less than their values in the unperturbed state. Below, dimensionless variables are 
used everywhere. 

The system of dimensionless equations (9)-(11) is the basis for derivation of a single 
equation describing the structure and dynamics of a wave travelling in one direction. 
We will neglect all terms O(es), s > 2. 

Weak dispersion of the medium allows one to use the method of slowly changing 
wave profile in a translating coordinate frame : 

y = R - f ,  5 = sf ((is the 'slow time'); 
a a a a a  _ _ _  a - 3 .  - - E - - -  = _ _ _ .  

giving 

1 ( 240 
Y + l " . .  +flz-py+iy,+pjj,,,+a #6,--jjz-qjy+-pp, +o(s2) = 0, (12) 
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Substituting for and 12 in terms of@ with the help of (13) and (14), we can reduce (12) 
to the following form: 

where a = .‘/a; and !F = 1 + (y + 1)/25b0 is the coefficient of nonlinearity; the first term 
of !F corresponds to the usual fluid dynamic steepening nonlinearity and the last one 
described ‘bubble’ nonlinearity. Equation (15) is derived using the conditions of weak 
chemical dispersion and irreversibility : 

We emphasize that (15) is derived under the condition of small-amplitude 
disturbances of p ,  u, p, $, but this equation does not include any assumption on the 
nonlinearity of chemical kinetic law. So one can conclude that (15) supplemented by 
(2) must describe exactly the evolution of small (but finite)-amplitude waves initiating, 
in the medium, an irreversible reaction through an arbitrary nonlinear kinetic law. The 
medium can be a gas-liquid bubbly medium or a pure fluid medium. 

3. Dynamics of linear disturbances 
Let us analyse the solution of the linearized version of (15). Eliminating fluid 

dynamic, bubble and chemical nonlinearities (!F = 0, 7 = Const, a = Const, 
N = Const), we seek a solution in the form of the superposition of non-interacting 
harmonics : 

bj = C 4exp(ojz+ik,y). 
03 

i=O 

So for a single harmonic we have the dispersion relation 

High-frequency limiting case (k2 - O(s-l)) (reaction is ‘frozen’) : 

(17) --f i i l k3  - 1 k2 zrl * 

Dispersion relation (1 7) corresponds to the linear limit of the well-known Kortewegde 
Vries-Burgers equation, which describes the propagation of waves in a chemically inert 
dissipative bubbly medium. According to (17) linear disturbances travel through the 
medium with the ‘frozen’ sound speed af. The profile of the solution can be monotonic 
or oscillating, depending on the relation between the parameters of the equation 
(Nakoryakov, Pokusaev & Shreiber 1983). 

Low-frequency limiting case (k2 - O(E)). Now the wave-kinetic interaction is 
significant (chemical dispersion terms are included in the relation O(k)) : 

Relation (1 8) also corresponds to the linearized Korteweg-de Vries-Burgers equation, 
but the coefficient ((a- 1)/2N--37) before the second derivative can be either negative 
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FIGURE 1. The curves Re (Q(k)) : (a) (a - I ) / N  > 9; (b) (a - 1) /N  < f ,  

or positive. The latter implies the possibility of low-frequency harmonic amplification 
within the zone of chemical transformation. The amplification takes place as the effect 
of reaction thermal release predominates over that of energy dissipation (see figure 1) : 

a-1 
N 
- > i. 

Note that (18) describes the propagation of linear disturbances with velocity a. In 
front of and behind the chemical transformation zone a = af, and (18) can be reduced 
to (17). But at the reaction zone a can exceed the value of the ‘frozen’ sound speed, 
owing to irreversibility of the system (as was shown before). In the case 

a > l  (20) 
the velocity of low-frequency harmonics at the reaction zone is higher than the velocity 
of any harmonic behind the reaction zone. As a result it is possible for the chemical 
transformation zone to separate from the original wave, forming a solitary autowave. 
Note that the condition of separation, (20), is more stringent than the criterion of 
amplification, (19), because for exothermic reactions (q > 0) the parameter a- l/N is 
always positive; its sign does not change with the sign of (a- I), at least as long as 

The regime with amplification but without autowave separation has been studied 
theoretically, and observed experimentally earlier. The criteria (19) and (20) together 
determine the possibility of formation of a self-sustained solitary wave: they show the 
connection of the physical mechanism leading to formation of the autowave with the 
chemical dispersion of the system. 

4. Nonlinearity 
The amplification of low-frequency harmonics and formation of a solitary autowave 

are linear effects appearing owing to chemical dispersion. In turn, according to the 
evolution equation (1 5), nonlinear interaction between harmonics could feed energy 
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FIGURE 2. The evolution of a wave with 8 = 0.2. 

from unstable low-frequency disturbances to attenuated high-frequency ones. 
Ultimately, a stationary solitary wave spectrum would be possible. A similar 
mechanism of stabilization of the solution is known for a number of problems, related 
to the self-organization theory: as examples we quote the front structure of a laminar 
flame; the surface of a liquid film flowing down an inclined wall; the solid surface 
sublimated by a laser; the solidification front structure of a weak alloy; multi-headed 
gaseous detonations, and others. Appearing in these systems are so-called ‘dissipative 
structures’ which exist in the steady-state region owing to energy exchange with the 
medium, and the decay of high-frequency harmonics is caused by various physical 
mechanisms : thermal conductivity, surface tension, viscosity, real-gas-dynamic effects, 
etc. 

In spite of the relative simplicity of the nonlinear equation (15), we have failed to find 
its exact analytical solutions (even in the case N = Const, a = Const). Analytical 
solutions are known only for essentially more simple equations with Burgers- 
Korteweg-de Vries nonlinearity : the Burgers equation, Korteweg-de Vries 
equation, Korteweg-de Vries-Burgers equation, Kuramoto-Sivashinsky equation 
(Kudriashov 1990; Minaev 1992). So the further investigation of solutions of (15) 
could only be carried out using numerical modelling. 
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FIGURE 3. The evolution of a wave with = 1.5. 

5. Results of numerical modelling 
The aim of the illustrative numerical modelling carried out here was to verify 

whether the conclusions on the possibility of solitary wave formation made on the basis 
of linear theory are true or not. Owing to the linearity of this process, the system of 
equations (1 5), (2) was simplified assuming the model of linear chemical dispersion. So 
the values of variables 7, N and a were set to be constants. Bubble dispersion and 
bubble nonlinearity were not taken into account, i.e. the medium was supposed to be 
a single-phase fluid. Thus the model (15), (2) retained only the mechanisms of linear 
chemical dispersion, viscous dissipation and the usual fluid dynamic steepening 
nonlinearity (the last is necessary for the existence of a steady-state solution). We took 

 c con st, N=Const, a = 2 / 3 ,  p = O ,  f = 2 . 6 ,  F=1. 

These values of the coefficients were chosen to satisfy the criteria (19) and (20) in order 
to illustrate the mechanism of solitary autowave formation. (In practical calculations 
the chemical and bubble nonlinear properties of the medium could of course be 
significant, and should not be neglected, unlike this illustrative numerical solution.) 

Equation (1 5)  was approximated by finite differences, with approximation error 
about .? + h2 (? = & is the time step, h = $ is the distance between mesh points). The 
stability of the calculation algorithm was analysed carefully. The precision of the 
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calculations was checked by using the analytical solution of Burgers equation (as 
a = 1). Owing to the assumption 7 = Const the size of the reaction zone was 
determined by T multiplied by the calculated velocity of the wave front. So if we defined 
the point where the reaction switches on as the point where the local amplitude of the 
leading wave was equal to the amplitude of the original wave (K), then we could also 
calculate the point where the reaction switches off. Outside the reaction zone (where 
a = 1) the usual Burgers equation was solved; the whole equation was solved only 
inside the reaction zone. 

A step-like wave was chosen as an initial condition; its amplitude was changed from 
K = 0.2 to = 2.5. The waves with & < 2.0 developed in different ways, but 
resulted in the formation of a solitary wave, whose parameters did not depend on K: 
its amplitude was approximately equal to 2.5, and velocity (in the translating 
coordinate frame) was approximately equal to 1.8, see figures 2-4. As increased, the 
stationary autowave formed more quickly. If was equal to or exceeded the value of 
the solitary autowave amplitude, then the separation of a self-sustained structure did 
not occur; see figures 4 and 5. 
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FIGURE 5. The evolution of a wave with & = 2.5. 

6. Discussion and conclusions 
The model (1 5), (2) derived in this paper describes the effects of linear dispersion and 

nonlinearity of chemical kinetics, of bubble and fluid dynamics on small- but finite- 
amplitude wave propagation. 

The linear analytical and numerical results explain the physical mechanism for 
formation of a solitary autowave in a system where a wave initiates a non-equilibrium 
process. These autowaves appear under certain conditions, described by criteria (19) 
and (20); the following are necessary: 

(i) at the reaction zone the amplification of low-frequency disturbances takes place; 
(ii) the low-frequency (relative to the inverse reaction time) linear disturbance 

(iii) the original wave amplitude is less than that of the stationary autowave. 
By the mechanism of propagation this autowave is related to detonation waves. In 

practice a weak shock wave could effectively initiate the reaction if the medium were 
first heated by a strong shock wave. Unfortunately, there are no data on such 
experiments, so the authors could not carry out a quantitative comparison of 
theoretical and experimental results. Qualitatively the comparison could be carried out 
using data on gas-liquid detonation (Sychev 1985; Gulhan 1989). Unlike our model, 
the condition of weak variation of bubble radius does not hold in these experiments. 

velocity at the reaction zone exceeds the ‘frozen’ sound speed in the medium; 
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Owing to nonlinear pulsations large peak pressures and temperatures are achieved in 
the bubbles, which significantly influences the value of the characteristic reaction time. 
So the initiation of reaction is determined not only by the shock wave but also by the 
inertia of the added mass of the liquid. In spite of this distinction the model derived 
here qualitatively describes the formation of a solitary self-sustained wave (gas-liquid 
detonation) wave in detail. This surprising fact allows us to conclude that the physical 
mechanism of solitary autowave appearance is not determined by the bubble 
dispersion (unlike the classical solitons), and is connected mainly with the chemical 
dispersion, dissipative and nonlinear features of the system. This mechanism is the 
same both for bubbly and single-phase media. But in a gas-liquid medium the 
formation of a stationary solitary autowave can be observed experimentally much 
more easily owing to the low value of the sound speed in hetero-phase systems. 

The authors wish to thank Professor D. Crighton for his significant improvement of 
the manuscript. 
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